Lewes BPW WWTF Contingency Committee

Overview of Activities

Background: 2022 GHD Study *

- Option 1: Harden existing site \$23M capital / \$2M annual O&M
- **Option 2**: New site at higher elevation
 - 2a discharge via spray irrigation or rapid infiltration beds \$156M / \$1M
 - 2b discharge via existing outfall into the canal \$114M / \$1M
 - 2c discharge to ocean outfall \$186M / \$1M
- Option 3: Partner with Sussex County at Wolfe Neck WWTP expansion
 - 3a discharge to existing Lewes outfall to the canal \$20M / \$1M
 - 3b discharge to constructed wetlands on Wolfe Neck site \$20M / \$1M

^{*} Costs were for Lewes only

Background, cont.

- Seven Workshops March 2022 through June 2023
- Public comments
- Board decision focus on Option 3
- BPW resolution July 2023 WWTP Contingency Committee
 - Evaluate Options 1 & 2
 - Consider other proven treatment technologies
 - "Just in case"

Situation has changed in the last year

- Archeological findings at Wolfe Neck site make Option 3b for a constructed wetland highly improbable
- Leadership change at Sussex County Engineering Department
- Sussex is now pursuing an ocean outfall, new Option 3c
- This changes the costs and practicality of some options
- GHD options assumed activated sludge technology
 - Invented in 1914
 - Newer technologies are available

WWTP Contingency Committee

Members

Barbara Curtis, Chair Earl Webb, Board Member Austin Calaman, General Manager BPW Tim Ritzert, City Council ex-officio **Mark Prouty Donna Colton** Sumner Crosby **Daphne Fuentevilla Bob Heffernan**

WWTP Contingency Committee

- Considered alternatives beyond those in the GHD study
- Explored different technologies
 - Webinars, visits, case studies, research, meetings, Q&As with engineers and operators for technologies of interest
- Explored alternate locations
 - Consulted UD experts
 - Elevation maps
- Discussions were as wide-ranging as possible
- The committee went as far as possible without spending any money

Meetings and Investigations

- Technologies considered: more sustainable + smaller footprint
 - Sequencing Batch Reactors (SBR)
 - Proven technology 30 years
 - Aerobic Granular Sludge (AGS) "Nereda"
 - 80+ operating plants world-wide
 - o 2012 first operating municipal WWTP
- Presentations
 - Aqua-Aerobic Systems, Inc. October meeting + several webinars + Q&As
- Tour of Berlin, MD SBR WWTF
- Discussions with operators
 - Berlin WWTF
 - Riviera Utilities WWTF Alabama 2020 startup
 - Whitefish WWTF Montana 2021 startup
 - Wolcott WWTF Kansas 2022 startup

Options Evaluated

• New Option1: Harden the current site

○ Also considered discharge into wetlands "A" via spray irrigation

New Option 2: Build nearby (Option 2b from GHD Study):
"B" State lands within Lewes border
Spray irrigation / solid-set sprinklers for discharge from plant

Spray irrigation / solid-set sprinklers for discharge from plant
and / or-

Lease a 2-4 acre parcel above floodplain from the state

o "C" BPW/City Schley Avenue property

o "D" Empty parcel

Option 1, revised

Current WWTF site

o Effluent quality better than permit requires... cleaner than water in the canal

- Membrane technology is expensive to operate
- Other technologies can achieve same quality at lower cost and in smaller space
- Elevate structures rather than dike the site
- Provide emergency access via hiking trail off Freeman Highway

Site can be floodproofed

- Sufficient room to install new system safely, while current operations continue
- Reuse some existing equipment
- Both SBR and AGS have lower operating costs
- AGS has lower capital and operating costs energy, labor, & chemicals
- Both are proven technologies

Option 1

	GHD	AQUA-AEROBIC SYSTEMS, INC.
TECHNOLOGY	Oxidation ditch, MBR expansion	Aerobic Granular Sludge, tertiary filters
CAPITAL	\$18M	Estimated similar: Aqua-Aerobic cost ~\$3M
0&M	<mark>\$2M/year</mark>	\$500K/year [\$300K at 2-year-old AGS plant]
LAND	Existing site + wetlands	Existing site
HARDENING	Dike property, larger EQ tank, elevate roadway	AGS tanks 20-24'; elevate buildings and equipment; floodproof digester building
ACCESS	Elevate road over dike	Widen hiking trail, access via Freeman Hwy
LABOR	6 FTE	2 FTE [+ manager, per DNREC rules]
ENERGY USE	6500 kWhr/day	Estimated 50% lower
CHEMICALS	<mark>\$1,000/day</mark>	<mark>\$200/day</mark>

Option 2b, revised

- GHD: Classic activated sludge plant 20 acres
- New: Aerobic granular sludge plant 2-3 acres
- 3 possible sites within Lewes
- No need for lengthy pipe runs
- Safe unless/until Lewes is forced to retreat

Option 2

	GHD Option 2b	AQUA-AEROBIC SYSTEMS, INC. New Option 2b
TECHNOLOGY	Activated sludge + tertiary filtration	Aerobic Granular Sludge [AquaNereda] + Aqua-Disk filters
PROJECT CAPITAL COST	<mark>\$91M</mark>	Estimated at <mark>\$35-40M</mark> [\$35M capital cost for 2 mgd WWTF 2021 in floodplain]
O&M COSTS	<mark>\$1M+/year</mark>	<mark>\$300-\$500K/year</mark> [\$300K budget 2024 for 2-year-old plant]
LAND	<mark>20 acres</mark>	<mark>2-3 acres</mark>
LABOR	<mark>6 FTE</mark>	2 FTE [+ manager, per DNREC rules]
DISCHARGE	Canal	Canal [fixed-head irrigation would add labor]

Conclusions

The committee is pleased to report that Lewes has options

- Recommended next steps
 - Determine the costs, risks / benefits, and community views for the revised options
 - Fund an engineering study for the new Options 1 and 2b
 - Review results of GHD study for new Option 3c
 - Continue negotiations with Sussex County
- When costs and risks are understood, the Board will be able to make a more informed decision
- If Option 3 is pursued, urge AGS technology be investigated for Wolfe Neck

Next Up

Brandon J. Coleman, P.E.

Vice President

HDR Engineering, Inc. Kansas City, MO 64131 brandon.coleman@hdrinc.com

The Aerobic Granular Sludge Process Wolcott, KS AGS