QUESTIONS TO EVALUATE TECHNOLOGY SELECTION FOR LEWES WWTF

DESIGN PARAMETERS

Average Daily Flow: 1.75 mgd Existing Site: 6 acres, MBR Process

Discharge: Lewes-Rehoboth Canal? Influent: Primarily household

Parameter	Existing WWTF Performance [Sep '20 to Sep '21]			Permit Limit
	Min.	Ave.	Max.	
рН	7.1	7.3	7.5	6 - 9
Total Nitrogen (mg/L)	3.5	5.6	7.7	8 (daily av.)
Total Phosphorous (mg/L)	0.05	0.59	1.66	2 (daily av.)
Enterococcus (cfu/100 mL)	0.50	0.89	2.0	10 (daily av.); 104 (daily max)
Total Suspended Solids (TSS, mg/L)	0.25	0.33	0.40	15 (daily av.); 23 (daily max)
Biochemical Oxygen Demand (BOD, mg/L)	1.2	1.2	1.3	15 (daily av.); 23 (daily max)
Average Daily Flow (mgd)	0.39	0.89	1.69	-

QUESTIONS

Nereda Technology:

- 1. To meet or exceed these parameters consistently, what components besides the Nereda technology would be recommended?
- 2. Minimum space requirement / lot size for full system
- 3. Lead time on design and build
- 4. Chemicals used for full process train
- 5. Number of operators to run the plant for all the above
- 6. Cost to build, including control systems and ancillary systems (e.g., headworks, polishing equipment, sludge dewatering)
- 7. Cost to operate
- 8. Headworks design (vs, e.g., for MBR system)
- 9. Number, configuration and size of tanks recommended
- 10. Disinfection system
- 11. Sludge management recommendations / options
- 12. Energy use
- 13. Loading of reactors: must we grow our own AGS? Pros and cons, is it more time consuming? Meeting permit limits in the interim period.
- 14. Polishing steps
- 15. Odour control

- 16. How many operators to run the full plant and how many need to be onsite versus remote? (Does the Delaware Code require more operators?)
- 17. Qualifications for operators
- 18. Training provided (vs assumed knowledge/qualifications) and where and when
- 19. Other support provided
- 20. Resiliency to storms and to shock loading
- 21. Impact of saltwater intrusion into systems during high water events
- 22. What are the Alabama plant permit limits? Permit limits at other US Aqua-Nereda sites?
- 23. Utilization of existing equipment?

Advantages and disadvantages / compare to Sequencing Batch Reactor System for all the above

Questions for Sussex County:

- 24. Does Sussex County have the ability to take granular (i.e., Nereda) sludge?
- 25. What process technology do they intend to install at Wolfe Neck?
- 26. What are their current permit limits?
- 27. Update on how much of the leased property will remain off limits, or when they will know
- 28. Update on GHD study for ocean outfall